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SUMMARY 
The linearized equations of motion show that in a viscous 

heat-conducting compressible medium three modes of fluctua- 
tions exist, each one of which is a familiar type of disturbance. 
The vorticity mode occurs in an incompressible turbulent flow, 
the entropy mode is familiar as temperature fluctuations in low 
speed turbulent heat transfer problems, and the sound mode is 
the subject of conventional acoustics. A consistent higher order 
perturbation theory is presented with the only restrictions being 
that the Prandtl number is 2 and the viscosity and heat conductivity 
are monotonic functions of the temperature alone. The theory is 
based on expansion of the disturbance fields in powers of an 
amplitude parameter CI. The non-linearity of the full Navier- 
Stokes equations can be interpreted as interaction between the three 
basic modes; in order to help physical insight the interactions 
are classed as ‘ mass-like ’, ‘ force-like ’, and ‘ heat-like ’ effects. 

Besides the amplitude parameter GC there is another subsidiary 
non-dimensional parameter E which indicates the relative 
importance of viscosity and heat conduction effects as compared 
to the inertial effects, E is proportional to the ratio of the molecular 
mean free path and the characteristic length of the flow pattern 
(Knudsen number). The main contribution of the paper is the 
outline of a consistent successive approximation for an arbitrary 
order in a and the presentation of explicit formulae for the 
second order (bilateral) interactions. 

A special case of rather general significance is treated in 
more detail. This is when all three basic modes have intensities 
and length scales of the same orders of magnitude and in addition 
to a the parameter E is also small; the second-order interactions are 
then relatively few and easily identifiable and are shown in table 1, 

T.he present analysis also sheds some light on the ‘ zero order ’ 
approximation which treats the vorticity and entropy disturbances 
as a ‘ frozen pattern ’ and the sound field as propagating non- 
dissipative waves. The interpretation of hot-wire measurements 
relies heavily on these simplified models and the present paper 
lends some support to these current hot-wire practices. 

*- Now at Brown University, Providence, Rhode Island. 
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1 .  INTRODUCTION 
In  fluid mechanics the non-linearity of the governing equations 

manifests itself in several ways. Some of the non-linear effects are 
described by various special names, for instance, the continuous generation 
of vorticity in the phenomenon called turbulence, the gradual steepening 
of the slope of compression waves, the generation of aerodynamic sound, 
acoustic streaming, scattering of sound waves by turbulence, etc. T h e  
question arises of whether all types of non-linear phenomena governed by 
the compressible Navier-Stokes equations have been uncovered or whether 
there are still others that have escaped attention. This can be answered 
only by a systematic study of the equations. 

There is another important question ; by varying some overall parameter 
(e.g. the Mach number of the mean flow, the length scale of the fluctuation, 
etc.) the relative importance of the various non-linear effects may vary, 
A typical problem is the change in the nature of turbulence as the Mach 
number of the primary flow increases. I n  actual experimentation the 
measured quantities must be interpreted within a theoretical framework 
even if it serves only to guide our thinking. The  measurement of 
fluctuating quantities in a turbulent flow has been extended to high speed 
flows (Kovhsznay 1953) and the present approach was strongly motivated 
by the desire to generalize the crude but simple concepts that were 
obtained from the linearized problem. 

Both at low speeds and at high speeds, the hot-wire measurements are 
carried out keeping the probe at a fixed location and the records are 
obtained as fluctuations in time and all statistical averaging is performed 
in the time domain. These time records at low speeds are often regarded 
as approximate instantaneous space traverses by virtue of Taylor’s 
hypothesis that the flow pattern is carried with the main flow and changes 
only relatively slowly. I n  high speed flow the simple linearized theory 
of the compressible case indicated that there are three fluctuation modes 
and for two of them (vorticity and entropy modes) this simple motion of 
‘ frozen pattern ’ can be immediately extended. We may call these 
‘ parabolic ’ modes as they obey parabolic differential equations. The  
third mode, the pressure or sound mode, obeys a hyperbolic differential 
equation and can be interpreted as a system of acoustic waves travelling 
with respect to the main flow. 

T h e  linearized theory does not indicate any interaction among the modes 
as long as the domain of interest is far from solid boundaries and it may be 
valid as long as the fluctuations are weak. When the intensity of fluctuation 
ceases to be small, the flow can still be conveniently interpreted as built up 
by superposition of the three basic modes of fluctuation. However, in 
addition to those originally accounted for, there are also fluctuations 
produced by the interaction of the basic modes. A systematic study of 
these interactions is expected to cover all the possible non-linear 
phenomena. 
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The analysis presented here does not attempt to ' solve ' compressible 
heat conducting viscous flow problems in the 'sense of an initial value or 
boundary value problem. It  attempts rather to serve as a guide to assess 
all the non-linear interactions in a consistent framework in which 
experimental information (of the usual incomplete nature) can be 
understood. 

2. FUNDAMENTAL EQUATIONS 

The fundamental system of differential equations governing the motion 
of a viscous, heat-conducting, compressible medium consists of the 
continuity, momentum and energy equations. If p ,  p, T,  E, v, p and K 

denote respectively the pressure, density, temperature, entropy, velocity, 
coefficients of viscosity and heat conduction, the fundamental equations 
assume the following form : 

D v  
p = - gradp - + grad(,u div v) + div[p def v] + pf, 

DE - div[K grad TI + p[+(def v) : (def v) - j ( d i ~ v ) ~ ]  + Q, (2.3) R Z -  
where D/Dt is Stokes material derivative and def v is the rate of deformation 
tensor. (If the components of the velocity v, referred to  axes 0x1x2x3, 
are vl, v2, v3, then defv is the second order tensor whose ij-th component 
is (av,/ax, + av,/axi) and (def v) : (def v) denotes the double tensor product 
22 (avi/i3xj + a ~ ~ / d x ~ ) ~ . )  In  the equations, m denotes the rate of mass 
production (or injection) per unit volume, f denotes the body force per 
unit mass and Q denotes the rate of heat addition per unit volume. 

The coefficients of viscosity p and heat conduction K are assumed to be 
known monotonic functions of the temperature, i.e. ,u = p(T) and K = K(T). 

For a perfect gas, the variablesp, p, T and E are related by the equations 
of state 

p = pRT (2.4) 

or 

where y = C,/C,, C,, being the specific heat at constant pressure and 
C, that at constant volume. The subscript Y designates some standard 
reference state. 

If m, f, Q are known functions of xi and t ,  the above five equations, 
together with the boundary conditions, are expected to be sufficient to 
determine the five unknowns p ,  p, T,  E and v. We shall be ultimately 
interested in the case rn = 0, f = 0, and Q = 0, but in the scheme of 
successive approximations the effect of the lower order terms on the higher 
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ones will be expressed most conveniently through these apparent ‘ external ’ 
forcing functions. 

Let us consider a four-dimensional space-time domain G, the size of 
which is determined by several considerations discussed in the ensuing 
paragraphs. Let 

denote the four-dimensional volume of G where dg stands for the volume 
element df1dt2dt3  and d7 for the element of time. We define the mean 
vaIues of the pressure and entropy in G by 

and define p,, To, p,, K,, by the equations* 

Pn = PO RTm 

Finally, the coordinate system is chosen so that 
1 ,.r 

(2.11) 

that is, the coordinate system moves with the mean velocity of the fluid. 
It should be noted that the mean valuesp,, E,, etc., depend upon the size 

of the space-time domain G. Consequently the fluctuations p -po, E -  E,, 
etc., as well as the ‘ intensity ’ of the fluctuations, ( p -po)/p,, ( E -  E,,)/E,, etc., 
also depend on the size of G. If we assume that p ,  E and all other flow 
variables are continuous functions of the space and time coordinates, then the 
‘ intensity ’ of the fluctuations in G can be made arbitrarily small by limiting 
our consideration to a sufficiently small space-time domain G .  Let K be 
a non-dimensional parameter characterizing the intensity of the disturbance. 
For example, we may take a as the maximum of /p-p,,l/lp,,l, ~ v / u o ~  etc., 
where a,, is the velocity of sound of the mean state. 

We now assume that in a sufficiently small space-time domain G, the 
pressure, density, temperature, entropy, p ,  p, T etc., can be expanded as 
power series in GC. This is the first condition which limits the extent of the 
domain G. The actual size of G is determined by the values of the spatial 
and temporal gradients of the fluctuations relative to our coordinate system. 

:+ Note that po,  To, etc. are not defined in the same manner as p o  and Eo mainly 
to simplify the algebra. The ultimate physical conclusions are not affected by the 
manner in which p,,, etc. are defined. 
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For low speed turbulence Lin's (1953) analysis indicates that the ratio 
of the temporal gradients to the spatial gradients may be small (compared 
with the mean velocity), in fact of the order of the velocity fluctuations 
themselves. The domain G would then be elongated along the time axis 
as can also be suspected from equations (6.5). For very small fluctuations, 
such as  during find period of decay of grid turbulence, G may be quite 
sizeable. 

We write 
p = p , + p + p +  ..., (2.12 a) 

p = p0+p '1 '+p@'+  ..., (2.12 b) 

Substituting (2.13) into the fundamental system of equations (2.1) to 
where p(I), p(l) are of order a, and p(jL), p(rt)  are of order cc". 

(2.5) inclusive and collecting terms of the same order in a,  we find 

(2.13 b) 

The functions FP) for n > 1 represent the non-linearity of the original 
equations. For n = 1, 

For n > 1, the F(n) depend only on the p(k) ,  p(k),  etc., where k n- 1. 
For example, FI2' = - 8. [pWl)].  The principal advantage of the scheme 
presented here is that the differential equations are the same for all values 
of n, only the ' inhomogeneous terms ' are different, and in the scheme of 
successive approximation these are computed from the solutions of the 
lower order equations. 

It is convenient now to eliminate two of the four thermodynamic variables 
and introduce non-dimensional quantities for the remaining two. We write 

(2.14) 

(2.15) 

The speed of sound of the undisturbed medium is a$ = yp,,/po. We assume 
further that the Prandtl number ( ~ C , / K )  = 2 ,  the sole purpose of this being 
to simplify the algebra. 
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The governing equations now become 

(2.16 a) 

where vo = po/po denotes the kinematic viscosity of the undisturbed medium 
and 

m(l) = m, fcJ) = f, Q(1) = Q. 

The higher order &), 

For the particular case n. = 2, we find 
Q(8’) are functions of the lower order solutions 

+ C .  [$defv(l)], (2.17b) 

+ -  ’” [$(def v(J)) : (def v(~) )  - +(V. v ( ~ ) ) ~ Q  - 
c, To 

111 these equations, p(l)/po is a function of PcJ) and S(l), for, by Taylor’s 
expansion, 

A considerable simplification follows from the fact that the systems of 
equations (2.16) are identical in form for all values of n. The ‘source 
functions’ m(l), f(l), &(I) correspond to the actual rate of fluid injection, 
body force and rate of heat addition, if any, while m(2), f(2), Q(2) are calculated 
from the solution of the first-order equations and represent only apparent 
rates of mass, momentum, and heat injection. This concept allows us to 
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study the behaviour of the fluid motion governed by (2.1) to (2.5) in two 
steps. Firstly, we treat the system (2.16) as if m(%), f("), Q(TL)  were known 
and secondly, examine the structure of the quantities m("), fCr'), Q("). 

3. THE THREE BASIC MODES OF FLUCTUATIONS AND THEIR PRODUCTION 

I n  a sufficiently small space-time domain G the intensity of the fluctuations 
in the flow field can be made arbitrarily small and terms of order cc2 and 
higher powers of tc in (2.12) may be neglected. We shall take n = 1 in 
equation (2.16), temporarily suppress the superscript (l), and obtain for 
the first-order fluctuations 

aP as m v . v +  - - - = - 
at at 

(3.1 a) 

av 
at 
- +a: V P  - voV2v - $voV(V. v) = f, (3.1 b) 

Q v v s  - $(y - l ) V o V 2 P  = ~ 

Po c, To I 

as - 
at - 3  O 

(3.1 c) 

We can describe the kinematic field by two new independent variables, 
the vorticity 51 and the specific dilatation rate q (the rate of volume increase 
per unit volume of the fluid) where 

Taking the curl and divergence of (3.1 b), we have 
sz = v x v ,  q =  V.V. (3.2) 

asz 
- - v o v z s z  = V x f ,  
at 

(3.1 b)' 

2 -ivov2q = - ~ ; P P + V . ~ .  (3.1 b)" 

The two equations (3.1b)' and (3.1b)" are equivalent to (3.1 b), since 
once 8 and q are known, the velocity field can be calculated from (3.2) 
and the appropriate boundary conditions. 

By a slight manipulation as indicated below, the system of equations 
(3.1a), (3.1b)', (3.1b)" and ( 3 . 1 ~ )  can be further combined into the 
following four equations : 

(3.3 a) 
a s l  - - v 0 V ~ s L  = Vxf ,  
at 

(3.3 b) 

aP a s  m 
at at + P , *  q = - - + -  

(3.3 c) 

(3.3 d) 

Equation (3.3 a) is the same as (3.1 b) ; (3.3 c) is the same as (3.1 c) ; (3.3 d) 
is obtained by substituting (3.2) into (3.1a); (3.3b) is obtained by 
eliminating S and q from (3.1 b)", (3.3 d) and (3.3 c). 
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‘I’he system of equations (3.2) and (3.3) can bc conveniently split into 

a =  a,+ap+Qs, (3.4a) 

P = P, + Pp + P,,, (3.4 b) 

three sub-systems as follows. Let us write 

etc. ; then 

(3.5 a) 

P ,  = 0, s, = 0,  qn = 0, (3 :5  b) 

V x v n =  an, v.v,=0; (3.5 c) 

ap = 0, (3.6 a) 

- $voV2S,, = $(y - l)VoV2P1,, ( 3 . 6 ~ )  8% - 
at 

dS m 
a p p  + -v + -, 

at Po 
V X V , = O ,  v.v, = q p ;  

q p = - , ,  

a, = 0, P., = 0 ,  

(3.6 d) 

(3.6 e )  

(3.7 a) 

(3.7 b) 

(3.7 c) 

.r x v, = 0, v. v, = qs. (3.7 d) 

Of course, there are infinitely many ways in which we can split up the 
equations (3.2) and (3.4)*. However, the above choice is a convenient one 
since (3.5), (3.6) and (3.7) each represent individually familiar phenomena. 

Thus (3.5) is identical with the equations describing the production, 
convection and dissipation of weak vorticity fluctuations in a viscous 
incompressible medium and will be called the zwt ic i ty  mode. Such a flow 
field does not generate pressure fluctuations of the same order, since the 
latter is proportional to the square of the velocity fluctuation and hence is 
negligible when the vorticity fluctuation is weak. For a similar reason, 
there is no production of entropy fluctuation, since viscous dissipation is 
again a second-order quantity. Finally, the velocity field is solenoidal as 
it should be for an incompressible flow. 

It is possible to decompose the sound mode further into two types of physically 
distinct fluid motion : (1) that due to mass sources in an incompressible medium 
which is characterized by P ,  = 0, S ,  = 0, v . vq = q g  = m/p,, 8, = v K vp = 0 ;  
and (2) that associated with the propagation of pressure waves in a compressible medium 
which is characterized by (3.6 a), (3.6 b), (3.6 c), (3.6 e) and q p  = - aP,/at+ aS,/at, 
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Equation (3.6) is identical with the equations describing the production, 
propagation and absorption of pressure waves in a viscous compressible 
heat-conductive medium, and will be called the sound mode. As a result 
of absorption, there will be entropy changes accompanying the pressure 
fluctuations. The  
velocity field is irrotational as is expected for a sound field. 

Finally, (3.7) can be recognized as the equations describing the production, 
convection and diffusion of hot spots in a heat-conducting fluid medium and 
will be called the entropy mode. Such a diffusion phenomenon does not 
generate pressure fluctuations and produces only a weak irrotational velocity 
field, necessary for the conservation of mass while the density varies. 

The  vorticity mode is the type of fluid motion most frequently 
encountered in the mechanics of viscous incompressible fluid. The sound 
mode is the type of fluid motion discussed in acoustics and in the theory of 
compressible fluids. The entropy mode has been the main subject of 
investigation in the theory of heat transfer in fluids. We thus see that the 
solution of (3.1) can always be thought of as consisting of the superposition 
of three basic modes of fluctuations that are familiar in branches of fluid 
mechanics. Naturally, not all the three modes of fluctuations will enter 
significantly into a particular problem, for example, in turbulent heat 
transfer problems and high-speed shear flows, the fluctuations consist 
principally of the vorticity and entropy modes. 

We non assume that the space-time domain G does not contain any 
solid boundaries (this is the second condition which limits the size of G). 
In  such a case, each of the three modes of fluctuations evolves as though the 
others were absent. Should G contain some solid boundaries, the last 
conclusion is no longer true, since the boundary conditions are imposed 
upon the resultant flow variables, such as the velocity vector v or 
temperature I', and not separately upon the individual modes (see, for 
example, Trilling (1955)). 

Decomposition of a small disturbance into different modes of fluctuations 
has been made previously by several authors, Carrier & Carlson (1946), 
I,agerstrom, Cole & 'Trilling (1949), Cole & Wu (1952), Wu (1952), 
Kovisznay (1953). The  terminology and classification adopted here follows 
closely that of Kovisznay. The modes of fluctuations are re-defined here 
to include the influence of body forces, mass and heat sources. The fluid 
dynamic effects produced by these agents will be the subject of discussion in 
the next section. 

When the space-time domain G is not sufficiently small the intensity 
of fluctuation is not small and terms of the order of second and higher powers 
of M. in (2.12) must be retained. Since equation (2.16) has the same form 
for n = 1 as for n > 1, the flow field can still be thought of as consisting 
of the three basic modes of fluctuations. Since the apparent source terms 
dn), fc"), Q(n), in (2.16) are functions of the fluctuations Pk), S("', v(~) where 
k < n, the terms P), S@), may be interpreted as the pressure, entropy 
and velocity fluctuations generated by the nth-order interactions of the three 

These entropy changes are denoted by S, in (3.6). 
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modes of fluctuations. Of all these interactions the most important are thc 
bilateral interactions of the three modes which contribute to the values of 
P@), S@) and ~ ( 2 ) .  

The entire analysis is partly motivated by the interest in compressible 
flow turbulence and like phenomena. I n  those cases the fluctuation levels 
in the entire space-time domain are of the order of a few per cent of the 
corresponding mean values. The theory described here is valid for 
interactions of any order provided the process converges in G. Its 
application to the bilateral interactions of the various modes of fluctuations 
will be given in 0 5 and 0 6.  

4. EFFECTS OF MASS ADDITION, BODY FORCES AND HEAT SOURCES 

(1)  Efects of mass addition 
From equations(3.5), (3.6) and(3.7),we see that the effectof mass addition 

is to produce the sound mode. Closer examination of (3.6) reveals that the 
effects of mass addition are really two-fold. When the fluid is injected 
into the medium at  a point or a region, it displaces the fluid that was 
originally there. Generally, the movement of the displaced fluid in turn 
generates pressure waves which propagate into the surrounding medium. 
However, mass addition with a spatio-temporal pattern obeying the diffusion 
equation does not cause pressure fluctuation, see (3.6b). It induces an 
incompressible source flow, see (3.6 d), with a velocity potential y$, obeying 
a Poisson-type equation 

m 

Po 
v2+ = - .  P 

(2) Efects of body force 
Referring to (3.5), (3.6) and (3.7), we conclude that the effects produced 

by body forces are two-fold. They generate the vorticity mode and the 
sound mode. If the force field is decomposed into two component fields, 
an irrotational and solenoidal field, the irrotational force component produces 
the sound mode (cf. (3.6b)) and cannot produce the vorticity mode (cf. 
(3.5 a)). On  the other hand, the solenoidal component produces the vorticity 
mode and cannot produce the sound mode. Consequently, a harmonic 
force field (which is both irrotational and solenoidal) can produce neither 
vorticity fluctuations nor pressure fluctuations. Its only effect is to produce 
a harmonic velocity field given by (see (3.1 b)) 

av, - =  
at 

(3) Effects of heat addition 
From (3.5), (3.6) and (3.7), we see that addition of heat to a medium 

generates the entropy mode and the sound mode. Physically this is clear 
for heat addition to a gas produces two effects. Firstly, it increases the 
temperature of the gas (and hence the entropy) and, secondly, it causes an 
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expansion of the heated fluid element. The first action is a more localized 
one and is described by the entropy mode. On the other hand, the 
expansion of the volume occupied by the heated fluid produces in the 
surrounding medium pressure waves, much like those generated by the 
inflation of a solid body. The action produced by the expansion of the 
heated fluid is thus described by the sound mode. 

At the end of the preceding section, we showed that the fluctuations 
Pn), Sn), Q(rL) can be interpreted as being generated by an apparent mass 
addition m"), body force f(l?) and heat sources Q(%), resulting from the 
nth-order interaction of the various modes of fluctuations. The effects 
produced in the flow field by a particular type of interaction will then 
depend upon the manner in which the particular interaction affects the 
value of dn), f(?I), Q(??). When the particular interaction gives rise pre- 
dominantly to a contribution to men), we shall describe the effects produced 
as ' mass-like effects ', and we shall speak of the interactions as having a 
' mass-like action'. Likewise, we can speak of ' force-like effects', ' heat-like 
effects ' or ' force-like actions ' and ' heat-like actions '. Thus, for example, 
the bilateral vorticity-vorticity interaction will be shown to produce mainly 
a force-like effect, and a slight heat-like effect. A systematic study of the 
effects produced by bilateral interactions of the various modes of 
fluctuations is presented in the next section. 

Boa-Teh Chu and Leslie S. G. Koeldsznay 

5 .  EFFECTS OF BILATERAL INTERACTIONS OF THE VARIOUS 

MODES OF FLUCTUATIONS 

General considerations 

of three basic modes of fluctuations. 
dynamic and kinematic variables are, from (3.4), (3.5), (3.6) and (3.7), 

I n  $ 3  we saw that the first-order system can be considered as the sum 
Their contributions to the thermo- 

= q', p(1) = pw, P S'1' = q'+ p, (5.1 a) 

(5.1 b) 

Substitution of (5.1) into (2.17) leads to the following expressions for 
the second-order source functions in terms of the separate first-order mode 
contributions as indicated by the double subscripts. (For example, f,,  
represents the apparent body force produced by the vorticity-sound 
interaction.) 

(5.2 a) 
(5.2 b) 

( 5 . 2 ~ )  
The 18 interaction terms can be computed from equations (2.17) and 
a brief examination leads us immediately to the conclusion that bilateral 
interactions of the three basic modes produce in general fluctuations in ail 
three modes. In  this case we have all 18 second-order interaction terms as 
indicated by Kovisznay (1953). 

"(1) = VQ ( 1 )  + v p + v y .  

d2) = PoCm,, + mpp + mss + m,p + mps + m,*l, 
f(2) = fnn + f,> + fs,s + f,, + fps + fa*, 

P2) = P O  C p  TO[QQQ + Qpp + Qss + Q n p  + Qps + Q s d -  
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It is a natural question to ask whether all these 18 terms are equally 
important. Naturally such questions can be answered only if more is stated 
about initial conditions and boundary conditions. In a concrete flow field 
these are imposed by grids, coolers, fans, etc. One mode can often be 
neglected and this immediately reduces the number of interaction terms by 
one-half. 

In  the next section an order of magnitude estimate of the non-linear 
interactions will be carried out for an important special example still having 
sufficient generality to illustrate the nature of these second-order interactions. 

6. BILATERAL INTERACTIONS OF THE THREE BASIC MODES OF FLUCTUATIONS 

Let us assume that the particular region of flow is far away from the 
boundaries and all three modes of fluctuations are present. Each mode of 
fluctuations can be pictured as a superposition of a large (or infinite) number 
of Fourier components. Typical components for each of the three modes 
of fluctuations have been discussed by Koviisznay (1953), or can be found 
directly from (3.5), (3.6) and (3.7) with m, f and Q put equal to zero. These 
are summarized below. 

(1) The vorticity mode 
The typical component of the vorticity fluctuation is given by 

iRtl) = Qi') exp[ik, . x - vo k2, t], (6.1 a) 

where ail). k, = 0 and S2v' is the complex amplitude fluctuation. k, is 
the wave-number vector, t denotes time and x the position vector. The 
corresponding velocity fluctuation is 

. k, x 
"(1) - exp[ik,.x- vokkt]. R - 2  k!,3 

(6.1 b) 

(2) The sound mode 
The typical component of the pressure fluctuation is given by 

P(l) = Pi1) exp[ik, . x - ct], (6.2 a) 

where Pi1) is the complex amplitude ; kp, the wave-number vector, and 
c is the complex number 

(6.2 b) 

The real part of c gives the rate of damping while the imaginary part gives 
the frequency of oscillation. Note that the absolute magnitude of c is of 
the order of uok,, since in general (vokp/ao)  4 1. (See also the paragraph 
following equation (6.4).) The entropy generated as a result of the 
dissipation of the pressure waves is given by 

(6.2 c) 

F.M. 2 K  
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The velocity fluctuation associated with the sound mode is 

(6.2 d) 

( 3 )  The entropy mode 

entropy mode is 
The typical component of the entropy fluctuation associated with the ~ 

Sil) = Stt)exp[ik,.x- gvok,2t], (6.3 a) 

where S$) is the complex amplitude and k, is the wave-number vector. 
The corresponding velocity fluctuation is 

v:~) = i+vo k, Si$ exp[ik, . x - gvo k,2 t ] .  (6.3 b) 

(4) Relative orders of magnitude 
We are now ready to estimate the relative importance of the various 

interaction terms. By inspecting (5 .3) ,  (5.4) and (5.5) from the point of 
view of substitution of periodic solutions given by (6.1), (6.2) and (6.3), 
we can assert the following facts: 

(a) Fluctuations in each mode may be characterized by two quantities, 

( 6 )  The medium has an intrinsic length scale, namely vo/ao. 

(c) In the interaction formulae, differentiation with respect to space 
coordinates does occur but integration does not ; consequently, the 
terms containing derivatives decrease monotonically with decreasing 
wave-numbers (with increasing length scales). 

We shall discuss the more complicated case where all three fluctuation 
modes have amplitude and scales, respectively, of the same order of 
magnitude. If one of the amplitudes or one of the wave-numbers is smaller 
than the other two, this can only simplify matters and never complicate 
them. 

Whenever a quantity is differentiated with respect to the space coordinates, 
factors of k and k2, etc., will appear. We shall assume that all three 
characteristic wave-numbers are of the same order of magnitude, i.e. k,/k,  
k,/k, kJk are each of order one, where k is the largest among k , ,  k, and k,. 

The amplitudes of the fluctuations have been characterized by the 
non-dimensional parameter tc. The length scale of the fluctuations will 
be characterized by another non-dimensional parameter E ,  defined as the 
ratio of the intrinsic scale of the medium vo/ao to the length scale of the 
disturbances k ,  that is, 

Clearly E can be regarded as the Knudsen number of the disturbances, 
when it is small the inertial effects will dominate over heat conduction and 
viscous effects. The magnitude of E can be estimated for atmospheric 

namely, an amplitude and a length scale. 

E = vo k/a,. (6-4) 
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conditions for which v - 0.15 cm2 sec-’ and a, = 30 000 cm sec-l. The 
intrinsic length (which is simply proportional to the mean free path of the 
gas) is vo/ao = 0.5 x cm. Even in the extreme case when the 
characteristic wavelength of the disturbance is as small as 1 mm, 
E.= 3-14 x lF4. 

The typical bilateral interaction term is of the order of u2 and we shall 
consistently neglect terms of order u3 and higher. If, however, E < 1 
as is usually the case and especially if E < u we shall find bilateral interaction 
terms that are of the order u26. (These usually represent higher derivatives 
associated with viscous .or heat conduction terms.) We propose to neglect 
these terms as they will be smaller than the third-order interaction terms. 
Furthermore, if E < u we may even neglect the viscous and heat conduction 
terms in the first-order problem and obtain the simplest set of equations 

.o -. 

(6.5 a) 

(6.5 b) 

(6.5 c) 

The superscript (0) emphasizes the difference between these equations 
and (3.5 a), (3.6 b) and (3.7 b). 

This set of equations was presented by Kovhsznay (1953) and represents 
a consistent ‘ zero order approximation ’ for weak fluctuation fields when the 
time interval of observation is short. The space domain of validity may 
or may not be also small depending on whether or not u increases with 
increasing space domain. (In homogeneous turbulence u may approach 
a limit for increasing domain.) 

Equation (6.5 a) represents a ‘ frozen pattern ’ of vorticity (or solenoidal 
velocity) and when it is applied to homogeneous turbulence in a wind tunnel 
it predicts an unchanged flow pattern carried by the mean flow velocity 
as suggested by Taylor’s hypothesis. Experimental verification of the 
frozen pattern concept by space-time correlation has been carried out in 
low speed flow for grid turbulence (Favre et al. 1954) and also the outer 
portion of the turbulent boundary layer (Favre et aE. 1957). 

Equation (6.5 b) indicates a ‘ frozen pattern’ behaviour for temperature 
spots and was similarly used for evaluating hot-wire measurements in 
low-speed turbulent temperature fields. Equation (6.5 c) represents the 
well-known equations of sound propagation of the pressure field. 

Equations (6.5) represent the most modest approximation for predicting 
the temporal behaviour of the three modes. Their value in interpreting 
hot-wire measurements in a high-speed flow is equal to that of Taylor’s 
hypothesis as used for interpreting hot-wire measurements in low-speed 
turbulent flows. 

We shall consider the amplitudes of the three modes to have orders of 
magnitude when the velocity fluctuations in the sound mode are comparable 

2 K 2  
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to the velocity fluctuations in the vorticity mode and when the temperature 
fluctuations in the sound mode are comparable to the temperature 
fluctuations in the entropy mode, i.e. log)/ z Iv$)l, lT$)l ,” lT;l)l. 

Space and time derivatives can be estimated from (6.1), (6.2) and (6.3) 
as follows. By choosing the reference space scale as k-I and the reference 
time scale as (a, k)-l all the non-dimensional space derivatives will have the 
same order of magnitude as the quantity which is differentiated (except for 
factors k,/k,  k,/k, k,/k that were assumed earlier to be of order unity). 

The orders of magnitude of the non-dimensional time derivatives differ 
depending upon the ‘ hyperbolic ’ (sound) or ‘ parabolic ’ (vorticity and 
entropy) character of the mode. For the sound mode the non-dimensional 
time derivative is of the same order as the space derivative (since the speed 
of sound was used as the reference velocity for forming non-dimensional 
quantities). For the vorticity and entropy modes, however, the non- 
dimensional time derivatives have order of magnitude ( k Q / k ) 2 ~  or (ks/k)2e 
times the quantities that differentiated. Indeed, differentiation of (6.1) 
with respect to t produces a factor v0 kk and non-dimensionalization of t by 
(a0k)-l results in the factor ( u o k ~ ) / ( a o k )  = ( k Q / k ) 2 ~ .  Physically, this is 
clear for the rate of decay of the parabolic modes is an extremely slow process 
when their length scale is very large compared to the mean free path and 
when time is measured in units of the period of sound oscillation. 

The above estimate for the order of magnitudes* of the various quantities 
associated with the sound mode can be summarized as follows : 

According to our basic assumption in this section, the intensity of the 
The order of vorticity mode must be such that v$)/ao = O(vg)/ao) = O(u). 

the vorticity properly non-dimensionalized is then !W/a0 k ,  = O(a). 
The estimates concerning the 

simply as follows: 
vorticity mode can also be summarized 

*The terms k,/k,  etc., are retained to facilitate arguments in the sub-cases 
where one of the wave-numbers k,, KQ and k, is small. 
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Finally, in accordance with the basic assumption, the temperature fluctua- 
tion associated with the entropy mode must be TL"/To = O( T;)/T,) = O(0r). 
Now from (2.18) and (3.7a), Til)/T, = S;'). It  follows that SL1) = O(U), and 
from (6.3 b), we find v(l) 

a0 
2- = o(;Uc). 

Consequently, the velocity associated with the entropy mode is usually a 
very small quantity. This is also clear from ( 3 . 7 ~ )  and (3.7d). Evidently 
this velocity is induced as a result of the diffusion of entropy spots, which 
is a rather slow process when time is measured in units of the period of 
sound oscillation of a comparabIe spatial scale. 

The estimates for the order of magnitude of the various quantities 
associated with the entropy mode are now summarized" : 

asp' 1 a T p  1 avp 

asp 1 aTj" 1 a q )  
- axi - - =  T ,  axi O($€), - -= axi o($,), 

(Z 2 )  
- - 0(ZU€), - - =  0 - € U  . 
at T ,  at a ,  at 

By substituting the mode contributions in equations (2.17) 
bilateral source terms can be readily obtained. Since 
interactions of the first-order solutions are computed here 

J 
the significant 
only bilateral 
we shall drop 

the superscript (1) in all subsequent equations. 
terms are 

The bilateral source 

m,, = 0, (6.9 a) 

mpp = - V .  (P ,  v,) + - - P2 + O(€Q2), (6.9 b) 
y - i  a 

2 at p 

m,, = O(ra2), 

mnp = - V .  (Pp  vn) + O(ea2), 

a p P  

at mpy = V .  (S,  v,) + S, - + O(ea2), 

(6.9 c) 

(6.9 d) 

(6.9 e) 

msR = V .  (S,vn) + O(ea2) ; 

f,, = - (vn .V)Vn, 

f p p  = - p  - - iV(VE) + O(ea2), 

(6.9 f )  

(6.10 a) 

(6.10 b) 

f, = O(ea2), (6.10 c) 
(6.10 d) 

fps = S,J + O(ea2), (6.10 e) 

f,, = O(ea2). (6.10f) 

*Here we assume that the quantity pi To is of the same order of magnitude 
as po. This is indeed the case for air if Sutherland's foimula for viscosity is used, 
(pL/pO)To = 1 .5 -  To/(To+C) where pi = (dp/dT)T=To and C = 140" K. 

p at 

av 
at 

fpn = - CV(V, . vn) - v, x Q,] + O(ea2), 
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Finally, (5.5) can be simplified to 

QQQ, Qppt Qsst Q n p  = O ( E ~ ~ > ,  (6.11a) 
(6.11 b) 
(6.11 c) 

The various types of interactions can now be described in greater detail, 

Qps = - (v, .V)S, + O ( E C ~ ~ ) ,  
Qsn = - (vn .V)Ss + O(Ea2). 

Vorticity-vorticity interactions 
According to (6.9 a), (6.10 a) and (6.1 1 a) the bilateral vorticity-vorticity 

interaction produces mainly a force-like effect. In  addition, there is a slight 
heat-like effect (of order E smaller). The apparent body force is - ( vn  .V)vQ 
or, in tensor notation, 

Since this force field is in general neither solenoidal nor irrotational, it 
generates both the vorticity mode and sound mode. The production of the 
vorticity fluctuation is of fundamental importance in the mechanics of 
turbulent motion. The production of sound by vorticity-vorticity inter- 
action has been analysed in a general fashion by Lighthill (1952). Our result 
with regard to sound generation could have been anticipated from Lighthill's 
theory. However, speaking in terms of body force instead of stresses, this 
analysis brings out more clearly the fact that the solenoidal component of 
the force field plays no part in sound generation but is of basic importance 
in the energy transfer between different size eddies in the turbulent 
fluctuation field. 

Sound-sound interaction 
According to (6.9 b), (6.10 b) and (6.1 1 a), bilateral interactions of sound 

modes produce primarily the mass-like and force-like effects. In  addition 
there is a slight heat-like effect indicating that only weak entropy fluctuations 
are generated by sound-sound interactions. A typical example of 
sound-sound interaction is the ' steepening ' of the finite amplitude 
compressive waves and it is well known that the deviation from the 
isentropic change through even a moderately weak shock wave is proportional 
only to the third power of the shock strength. This particular conclusion 
also suggests that the sound-sound interaction may lead to only a slight 
production of the vorticity fluctuations. From (6.10 b), we have 

Furthermore, the velocity induced by pressure waves propagating in a 
viscous compressible medium satisfies the equation 

3 = - a i ~ ~ + , v , ~ 2 v , ,  
at 

so that fPp can be rewritten as 
fpp = - &V[ai P2-i- $,I + O(m2). 
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Consequently, fpp is principally an irrotational vector field, so that 
sound-sound interaction does produce only a slight vorticity fluctuation. 
There is, therefore, little possibility of altering the intensity of turbulent 
fluctuation in high speed flow through the random interaction of the 
pressure waves and, possibly, weak shock waves. We thus see that the 
main effect of sound-sound interaction is the production of the sound mode 
itself. 

The net strength of the sound source, according to (3.3b), (6.9b), 
(6.10 b) and (6.11 a), is 

V .  f,, + %p = V .  [v,(v. v,) + (v, .v)v, + a: V ( P ~ ) I  + 
at 

y-i a 2  +-- P2 + O(€Q2), 2 at2 p 

where use has been made of (3.6d) and (3.6e) (with m = 0). 
notation, the last result can be written simply as 

In tensor 

y- i  a 2  
( v p i v p i + a ~  P i s i j ) +  - - P 2 + 0 ( e a 2 ) ,  

a 2  

axi axi 2 at2 p 

or alternatively 

Assuming that the flow fluctuations at infinity are zero, the distribution of 
source strength, when integrated over the entire flow field, in general yields 
a resultant strength different from zero indicating that there is a net generation 
besides self-scattering. (A discussion of self-scattering was given by 
Westervelt (1957).) 

Entropy-entropy interaction 
Our analysis clearly shows that the entropy-entropy interaction, though 

a theoretical possibility, is practically insignificant. From (6.9 c), (6.10 c) and 
(6.11 a), it is seen that it produces only a slight mass-like and a slight heat-like 
effect (both of order of €a2), and an even smaller force-like effect (of order 
€2012). 

Vorticity-sound interaction 
According to (6.9 d), (6.10 d) and (6.11 a), the vorticity-sound interaction 

produces a mass-like and force-like effect. It has only a slight heat-like 
effect and hence produces only very slight entropy fluctuations (i.e. of 
order of €a2).  

Since the force field in general is not an irrotational field, there will be 
vorticity production as a result of interaction. The source strength in the 
production of vorticity fluctuations is V x (v, x a,). This term includes 
the effect of both the stretching and expansion of vortex tubes and the 
convection of vorticity under the action of sound fluctuation. In the case 



512 Boa-Teh Chu and Leslie S. G .  Kovdsznay 

when a single shock wave is interacting with the turbulent flow, the 
theoretical calculation of Ribner (1954), which was explored experimentally 
by Kovhsznay (1955), indicates that the effect is not very large, at least in 
that particular problem. 

The  
resultant strength of the sound source as given by (3.7) can be simplified to 

T h e  vorticity-sound interaction also produces the sound mode. 

In the last step of the derivation, use has been made of the relation 

3 = - v. vp + O(EtC). 
at 

I n  tensor notation, the resultant source strength of the sound mode is simply 
2 az(vQ,v,j)/ax, axj, a result which could have been anticipated from 
Lighthill's quadrupole radiation theory. Assuming that the flow fluctuations 
die down fast enough at infinity, integration of the source strength over the 
entire flow field yields no net contributions. Consequently, the sound mode 
produced by vorticity-sound interaction can be interpreted as the scattering of 
the incident sound wave by the vorticity fluctuations. Scattering of a shock 
wave by turbulent fluctuations has also been calculated by Ribner (1954). 

Sound-entropy interaction 
By (6.9 e), (6.10e) and (6.11 b), the interaction of the sound and entropy 

modes produce all three basic modes of fluctuations. 
Let us first examine the vorticity mode produced by the interaction. 

According to  (3.3 a) and (6.10e), the source term which produces vorticity 
fluctuation is 

avp 
V x S, - + O(~u2)  = VS,.x - + O(~u2)  = -a; VS, x VP,. [ at 

This is a familiar term in the theory of rotational flow. Physically, the 
vorticity produced by it can be interpreted as the consequence of the 
fact that the resultant force acting on any lump of fluid fails to pass 
through the centre of mass, and thus produces a torque and an angular 
acceleration. This result suggests that the action of pressure field on a 
stream carrying randomly distributed temperature spots in a turbulent 
stream mag generate turbulent fluctuations and can modify the original 
turbulent fluctuations in the stream. I n  the only known experimental 
realization of this situation (spottily heated air accelerating through the 
nozzle of a supersonic wind-tunnel) the effect appeared unimportant (see 
nlorkovin 1956, p. 8). 

The  net 
sound source can be calculated from (3.6 b) and can readily be simplified to 

Next consider the sound mode generated by the interaction. 
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If the disturbance dies down at infinity fast enough, the resultant source 
strength integrated over the entire flow field is zero, so that the phenomenon 
can again be interpreted as the scattering of the incident sound wave by the 
entropy spots. 

Finally, consider the generation of the entropy spottiness by the inter- 
action. It follows from (3.7 b) and (6.11 b) that the source of entropy 
fluctuation is given by the term -(vp .V)S,. It can be regarded as a 
convection of heat by the motion of the sound field. 

Special cases of generation of all three fluctuation modes in the interaction 
between an entropy disturbance and an infinite or wedge-attached shock 
wave were discussed theoretically by Chang (1955). 

Entropy-vorticity interaction 
According to (6.9 f) ,  (6.10f) and (6.1 1 c), the entropy-vorticity interaction 

produces a mass-like and a heat-like effect as well as a slight force-like effect. 
Consequently, this type of interaction can only produce a very weak (of 

O(C?€) 

' scattering ' 

Sound-sound 

O(a2 €2) 

' vorticity convection 

Vorticity-vorticity 

' scattering ' 
a 2  

- (S ,  vvi) atax, 

Entropy -entropy 

' generation ' 

-alps,) (VP,) 

Sound-vorticity 

Sound-entropy 

Vorticity-entropy 

Sound source Vorticity source 

' steepening ' and 
' self-scattering ' 

y-i a 
+--Pi 

2 at2 

O ( a r 2 E )  

' generation ' I ' self-convection 

O ( d € )  O(&* €) 

Entropy source 

O ( d € )  

O ( d  €) 

O(ola€) 

O( 012 €) 

heat convection ' 

heat convection ' 

Table 1.  Second-order non-linear interaction between modes of order a. 
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order E U ~ )  vorticity fluctuation. The sound field produced turns out to be 
weak also because the expansion generated by the apparent mass addition 
is exactly balanced by the contraction following heat subtraction. This 
can best be seen if we calculate the net source strength for the sound mode 
produced. From (6.9f) and (6.11 c), one concludes that 

Boa-Teh Chu and Leslie S. G. Kovlisxnay 

a Q s ~  a a 
m,n-V.f,,+ - - - v. [v* S,] - (.* .V)S, + O ( E U 2 )  

at 

= O ( € U 2 ) ,  

since V. vQ = 0. Consequently, the main effects of entropy-vorticity 
interaction are in the production of the entropy mode. This mode is 
generated as a result of the convection of the hot spots by velocity fluctuation 
associated with the vorticity mode. This type of interaction has a leading 
role in turbulent heat transfer phenomena, see Corrsin (1952). 

In order to summarize all second-order effects table 1 was prepared. 
It gives the source strength for all three modes up to order u2. Terms 
of order u2c and u2e2 are only indicated. Table 1 includes also a more or less 
intuitive label for each bilateral interaction, like ' generation ' or ' scattering '. 
These are not intended as accurate descriptions but are merely to suggest 
the corresponding physical processes. 
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